Voltage distribution over capacitively coupled plasma electrode for atmospheric-pressure plasma generation

نویسندگان

  • Mitsutoshi Shuto
  • Fukumi Tomino
  • Hiromasa Ohmi
  • Hiroaki Kakiuchi
  • Kiyoshi Yasutake
چکیده

When capacitively coupled plasma (CCP) is used to generate large-area plasma, the standing wave effect becomes significant, which results in the hindering of the uniform plasma process such as in a plasma etcher or plasma chemical vapor deposition. In this study, the transmission line modeling method is applied to calculate the voltage distribution over atmospheric-pressure CCP electrodes with the size of 1 m × 0.2 m. The measured plasma impedance in our previous study was used in the present calculation. The results of the calculations clearly showed the effects of excitation frequency and the impedance of the plasma on the form of the voltage distribution caused by the standing wave effect. In the case of 150 MHz frequency, the standing wave effect causes a drastic change in the voltage distribution via plasma ignition; however, the change is small for 13.56 MHz. It was also clarified that the power application position is important for obtaining a uniform voltage distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and implementation of high voltage square wave power source with variable DC-offset and study its effect on atmospheric-pressure plasma

Nowadays high-voltage power sources is used in different areas such as generation of atmospheric-pressure plasma. Different voltage waveforms affect the plasma generation and its quality. In this paper a new high voltage square wave with DC-offset power source is presented to study the different parameters on plasma generation and propagation. The proposed converter which is based on power semi...

متن کامل

Enhanced control of the ionization rate in radio-frequency plasmas with structured electrodes via tailored voltage waveforms

Radio-frequency capacitively coupled plasmas that incorporate structured electrodes enable increases in the electron density within spatially localized regions through the hollow cathode effect (HCE). This enables enhanced control over the spatial profile of the plasma density, which is useful for several applications including materials processing, lighting and spacecraft propulsion. However, ...

متن کامل

Kinetic simulation of capacitively coupled plasmas driven by trapezoidal asymmetric voltage pulses

A kinetic Particle-In-Cell simulation with Monte Carlo Collisions was performed of a geometrically symmetric capacitively coupled, parallel-plate discharge in argon, driven by trapezoidal asymmetric voltage pulses with a period of 200 ns. The discharge was electrically asymmetric, making the ion energy distributions at the two electrodes different from one another. The fraction of the period (a...

متن کامل

Numerical Modeling of an RF Argon–Silane Plasma with Dust Particle Nucleation and Growth

A one-dimensional numerical model and simulation results are presented for a capacitively-coupled radio frequency parallel-plate argon–silane dusty plasma. The model includes self-consistently coupled numerical modules, including a plasma fluid model, a sectional aerosol model, and a simple chemistry model to predict rates of particle nucleation and surface growth. Operating conditions consider...

متن کامل

Effect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells

Cold atmospheric plasma (CAP) has received great attention due to its noteworthy ability, and has also been widely studied over few decades in physics, biology and medicine. The purpose of this study is to evaluate the cold atmospheric pressure plasma effects on the proliferation of breast cancer cells. MDA-MB-231 was used for this experiment. MDA-MB-231 cells were cultured in 24-well plate and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013